A tail-matching method for the linear stability of multi-vector-soliton bound states

نویسندگان

  • Jianke Yang
  • JIANKE YANG
چکیده

Linear stability of multi-vector-soliton bound states in the coupled nonlinear Schrodinger equations is analyzed using a new tailmatching method. Under the condition that individual vector solitons in the bound states are wave-and-daughter-waves and widely separated, small eigenvalues of these bound states that bifurcate from the zero eigenvalue of single vector solitons are calculated explicitly. It is found that unstable eigenvalues from phase-mode bifurcations always exist, thus the bound states are always linearly unstable. This tail-matching method is simple, but it gives identical results as the Karpman-Solev'ev-Gorshkov-Ostrovsky method. Mathematics Subject Classification: 35Q55, 35Pxx, 74J35.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Asymptotics for Solitons in PT -Symmetric Periodic Potentials

Solitons in one-dimensional parity-time (PT )-symmetric periodic potentials are studied using exponential asymptotics. The new feature of this exponential asymptotics is that, unlike conservative periodic potentials, the inner and outer integral equations arising in this analysis are both coupled systems due to complex-valued solitons. Solving these coupled systems, we show that two soliton fam...

متن کامل

Interactions of vector solitons.

In this paper, we study the interaction of two widely separated vector solitons in the nonintegrable coupled nonlinear Schrödinger (NLS) equations. Using a modification of Karpman-Solov'ev perturbation method, we derive dynamical equations for the evolution of both solitons' internal parameters. We show that these dynamical equations allow fixed points that correspond to stationary two-vector-s...

متن کامل

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Multi soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension

As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005